

UNLOCKING THE POTENTIAL OF WASTE TO HYDROGEN

Intro GHT

OUR PRODUCT

OUR FEEDSTOCK

HYDROGEN

NON-RECYCABLE WASTE

THAT IS PRODUCED, WHERE IT'S NEEDED

THAT OTHERWISE IS BURNED

THE PROBLEM CONTAINS OUR SOLUTION

WE WALK THE TALK: OUR PILOT PLANT IN AUSTRIA

PRODUCE LOW, SELL HIGH.

FOR A WORLD WORT LIVING

We have a strong, experienced and diverse management- and engineering-team committed to changing the world

"Energiewende ist Teamsport"

Dr. Philipp Härle

& Company Hengeler Mueller

McKinsey

BEIRAT

The modular nature of our technology allows processing a broad range of feedstock types to produce different forms of green molecules – all of this at different scales and capacities

Variety of inputs...

Biogenic (e.g. wood-waste, straw, bagasse, miscanthus, digestate)

Non-biogenic (e.g. non-recyclable plastic, RDF, process waste)

Feedstock requirements:

- high calorific value (>12 MJ/kg),
- *"conveyable" shape and form (ideally 2D material)*
- moderate chlorine content (PVC<1.5%).

...and outputs

Local green gases (e.g. hydrogen, syngas, methane, methanol, synfuels)

1) Figures represent annual capacity

Our plants reach groundbreaking economics even with relatively small plants and provide no brainier business cases for many feedstock owners and offtake users

1) Calculations reflect small decentral plant (4,8k tons capacity) on the basis of biogenic feedstock (e.g. wood)

9